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Modeling and Analysis of the DSS-14

Antenna Control System

W. Gawronski and R. Bartos

Communications Ground Systems Section

An improvement of pointing precision of the DSS-14 antenna is planned for the

near future. In order to analyze the improvement limits and to design new con-

trollers, a precise model of the antenna and the servo is developed, including a finite

element model of the antenna structure and detailed models of the hydraulic drives

and electronic parts. The DSS-]4 antenna control system has two modes of opera-

tion: computer mode and precision mode. The principal goal of this investigation

is to develop the model of the computer mode and to evaluate its performance.

The DSS-14 antenna computer model consists of the antenna structure and drives

in azimuth and elevation. For this model, the position servo loop is derived, and

simulations of the closed-loop antenna dynamics are presented. The model is sig-

nificantly different from that for the 34-m beam-waveguide antennas.

I. Introduction

The DSS-14 antenna control system model consists of the antenna structure, antenna drives in azimuth

and elevation, and the position servo loop. Each drive, in turn, consists of gearboxes, hydraulic servo

(active and passive valves, hydraulic lines, and hydraulic motors), and electronics boards (amplifiers

and filters). The DSS-14 antenna control system model was developed by R. E. Hill [1,2]. In the present

development, we obtain a more precise model that allows for accurate simulations of the antenna pointing

errors and allows simulation of the intermediate variables, such as torques, currents, wheel rates, truss

stresses, etc. We incorporate the finite element structural model with free rotation in azimuth and

elevation, in a manner similar to the 34-m antenna models [3-5], that involves cross-coupling effects

between azimuth and elevation, wind pressure on the dish, and pointing error model. The hydraulic part

involves a recent development in modeling of the hydraulic components by R. Bartos [6-8].

The rate loop model consists of the elevation and azimuth drives and the antenna structure. Each drive

consists of three major components: the electronics boards, hydraulic system, and gearbox. A model of

each component is derived separately, then put together, forming the drive and rate loop models. Finally,

the position loop is closed to obtain the position loop model.

II. Drive Model

A block diagram of the drive model is shown in Fig. 1, where Nt is the ratio between motor rate

and tachometer (pinion) rate; r, rad/s, is the rate input to the drive; i, A, is the hydraulic active valve
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Fig. 1. Block diagram of the antenna drive.

solenoid current; To and T, N.m or lb in., are the gearbox and on-axis torques, respectively; and 8tach and
am, rad/s, are the pinion and motor rates, respectively. The state-space representation of the electronic

board, hydraulic system, and gearbox are derived in the following sections.

A. Electronic Board

A schematic diagram for the electronic board is shown in Fig. 2. The inputs are the rate command

r, rad/s, and the tachometer rate 8tach, rad/s. The output is the solenoid valve current i. The scaling

factors, k_ and kt, convert the inputs into the command voltage, v_, and tachometer voltage, vt. The

subsystem, Gt, is the tachometer circuit: it transforms the tachometer voltage, vt, into the voltage, vto.

The subsystems with the transfer functions Grl and Gr2 are the rate amplifier circuits: they transform

the command voltage, v_, and the tachometer voltage, vto, into the error voltage, v_. The subsystem with
the transfer function, G_, is the valve driver amplifier circuit, with the error voltage, v_, as the input and

the valve current, i, as the output.

--I ' ] -L_2LJ
ttac._htJ - +

Fig. 2. Block diagram of the electronic board.

The following transfer functions of each of the four components are derived in the Appendix. The
transfer function Gto for azimuth is

C,o= o.151 (1)

and, for elevation, is

Gto = 0.127 (2)

The transfer functions Grl (from Vr to vs) and Gr2 (from Vto to vs) are
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where

Grl = 6.20 Go

fGr2 = - 4.65 Go

(3)

1 + 0.400s
Go - (4)

1 + 4.205s

is the transfer function of a lag compensator. The transfer function Gs is

Gs = 4.42 × 10 -5 (5)

The scaling factors, k_ and kt, are k_ = 1212.6 V/rad/s and kt = 2.5 V/rad/s. Thus, the command
transfer function from the rate command r to the solenoid current is is

G_ = k_G_lG8 = 0.3323 Go (6)

where Go is defined in Eq. (4). The tachometer transfer function from the tachometer rate Otach to the

solenoid current is is

Gt = ktGtoGr2Gs (7)

Gt = {-0"7750 × lO-4Go for azimuth-0.6525 × lO-aGo for elevation (8)

In order to check the correctness of the derivation, note that the ratio Gr/Gt should be equal to No, where

No is the tachometer-to-axis ratio (No = 4287.5 for azimuth and No = 5083.6 for elevation). Indeed,

from Eqs. (6) and (7), one obtains

Gr r -4287.7 = No for azimuth
Gt -5092.7 _ No for elevation (9)

Finally, the state-space representations of the transfer functions Gr and Gt (for azinmth and elevation)

are easily obtained with the standard Matlab command in the form

:i:b = AbXb + Bblr + Bb2Ot,_ch
(I0)fi = Cbx + Dblr + Db2_tach

The plot of the transfer function in azimuth (magnitude and phase) from r to i is shown in Fig. 3. Tile

transfer function for elevation is identical. The plots of the transfer functions in azimuth and elevation
from _t_ch to i are shown in Fig. 4. The magnitudes drop in the frequency range from 0.01 to 0.1 Hz due

to implementation of the filter Go.
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Fig. 4. Magnitude of the electronic board transfer function from the tachometer rate
input to the board current.

B. Hydraulic System

The hydraulic servo system model was presented by R. E. Hill in [1] and [2]. Here we take a different

approach, based on the recent investigations of hydraulic components by R. Bartos (see [6-8]). A block
diagram of the DSS-14 hydraulic system is shown in Fig. 5. It consists of the hydraulic motor, shorting

valve, hydraulic lines A and B,. passive servo valves, and active servo valves. It has two inputs, servo
valve current i and motor rate Om, and one output, motor torque To. The equations for each component

are derived separately based on the work of Bartos [6 8]. Basically, these models are nonlinear ones;
however, we linearize them in order to model the antenna linear regime of operation.

1. Active Servo Valve. This valve model has the input, i, A, and two outputs, q=v--the flow rate

out of port a, cm3/s, or in.3/s, and qbv, the flow rate out of port b, cm3/s, or in.3/s. From [6], one obtains

2 = w2okai (11a)

qb. = -q_v (llb)

where _o = 0.8 is the damping ratio, Wo = 345.6 rad/s is the valve natural frequency, and k_ = 59, 200
- 97, 300 cm3/s/A (23,300-38300 in.3/s/A) is the valve gain. The lower value is the Bartos estimate,

while the upper value is the Hill estimate [2]. The values of the parameters are listed in Table 1.
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Fig. 5. Block diagram of the hydraulic drive.

Table 1. Parameters of the active servo valve (line A and line B).

Drive ¢o
rad/s cm 3/s/A in.3/s/A

Azimuth 0.6 to 0.8 345.56 59,200 to 97,300 23,300 to 38,300

Elevation 0.6 to 0.8 345.56 59,200 to 97,300 23,300 to 38,300

Introducing the new variable qo = qav - qbv, one obtains from Eq. (11)

2 2w2ok,,i7t'o+ 2¢oWo71_ + Woq_ = (12)

The differential variable qv and the other differential variables introduced allow one to further simplify

the analysis without loss of accuracy and to get rid of tile "parasitic" variables, such as tank pressure,

supply pressure, and case pressure.

2. Shorting Valve. The pressures Pa and pb, kPa (lb/infl), are the inputs to the shorting valve, and

the flows qa, and qbs, cm3/s (in-3/s), are its output (see Fig. 5). The linearized relationship between the

inputs and outputs is as follows:

qo,= k,(p. - pb) I

Jqbs = -- qas

(13)

where ks is the valve gain, k, = 0.0007- 0.007 cin3/s/kPa (0.0003-0.003 in.3/s/psi), both in azimuth and

elevation.
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Introducing new differential variables p = Pa -Pb and qs = qas - qbs, one obtains Eq. (13) in the form

qs = 2ksp (14)

3. Passive Servo Valve. This valve has four inputs: pressures Pa and Pb, supply pressure Ps, and

tank pressure Pt- The last two are supplementary constant inputs that can be removed from the analysis.
The valve has two outputs: flows qap and qbp. Its linearized input-output relationship is as follows:

qap=kpl(p_ - ps) + kp2(p_ -Pt) (15a)

qbp = kpl(Pb --ps) A-kp2(Pb -Pt) (15b)

where the gains are kpl = 0.0055 cm3/kPa (0.00233 in.3/psi) and kp2 = kpl, the supply pressure is
17,240 kPa (2500 psi), and the tank pressure is 345 kPa (50 psi). These values are identical for azimuth
and elevation.

Introducing qp = q_p -qbp, and recalling that p = pa -Pb, one obtains Eqs. (15a) and (15b) as follows:

qp = (kpl + kp2)p = 2kpp (16)

where, for simplicity of notation, we denote kp = kpl = kp2.

4. Hydraulic Motor. The motor is described in [8]. From Fig. 5, it follows that the motor has four

inputs and four outputs. The inputs are pressures Pa and Pb, case pressure Pc, and motor rate _m, rad/s.

The outputs are flows qa and qb, leakage to the case qc, and motor torque To, N-m (or lb in.). Following
[8], one obtains the flow qa from Eq. (59) of [8]:

q_ = qal + q_2 + q_3 (17)

But, from Eq. (40) of [8],

q_l = DOra (18)

where D = 6.3 cmS/rad (0.3836 in.S/rad) is the motor "displacement." From Eq. (52) of [8], one obtains

q_2 = -_'(P. -Pc) (19)
P

where ka2 = from 6.35 × 10 -5 to 18.3 × 10 -5 cm 3 (from 2.5 × 10 -5 to 7.2 × 10 -5 in. 3) is the leakage

constant (assumed to be 10 -4 cm 3, or 4 x 10 -5 in.3); # -- from 2.8 × 10 -4 to 2.8 × 10 -3 kPa s (from

4 × 10 -5 to 4 × 10-6 Ib s/in. 2) is the absolute fluid viscosity (assmned to be 10 -4 cm 3, or 4 × 10 -5 in.3);
and Pc = 221 kPa (32 psi). From Eq. (58) of [8], one obtains the leakage from port A to port B, q,a:

= kO (po-pb) (20)
P
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where ka3 is the constant of proportionality determined through experiments. It is assumed to be equal

to ka2, ka3 -- ka2.

Combining Eqs. (17) through (20), one obtains

ka2 + ka3 ka3 ka2
qa = DOra + --p,, - --Pb - --Pc (21)

# # #

From [8], Eq. (60), one obtains tile flow rate qb:

It follows from [8], Eq. (41), that

and from [8], Eq. (53), that

qb=qbl +qb2 -- q_3 (22)

qbl = --qal = -DOra (23)

Combining Eqs. (22), (23), (24), and (20), one obtains

k_3 ka3 + kb2 kb2 (25)qb = -DO - --pa + Pb -- --Pc
# It IL

The motor torque To is obtained from Eq. (28) of [8] by neglecting Coulomb friction and inertia torques

(the latter are included in the gearbox model):

To = Tp + Tf (26)

where Tp is the torque generated by the motor and 77i is the viscous friction torque. The linearized
Eq. (10) of [8] gives the torque generated by the motor:

Tp = D(pa - Pb) (27)

and from Eq. (24) of [8], one obtains tile viscous friction torque:

T I = -k,,D#O (28)

where kv = 0.0438 is a dimensionless viscous friction coefficient. Combining Eqs. (26) through (28), one
obtains

To = Dp,_ - Dpb - kvDpO

: (24)
#



Defineq = qa - qb; then from Eqs. (21) and (25), one obtains

q = 2DOra + __3ka2p# }
To = Dp - kvD#O,n

(30)

The motor parameters are given in Table 2.

Table 2. Parameters of the hydraulic motor (line A and line B).

Drive #, kPa s #, lb s/in. 2 D, D, Pc, Pc,
cma/ra d in.a/rad kv ka2, cm 3 ka2, in. 3 kPa psi

Azimuth 2.8 x 10 -a 0.4 x 10 -6 25.2 1.52 0.0438 4.1 × 10 -4 2.5 × 10 -5 220 32

to to to to

28 x 10 -4 4 × 10 -6 11.8 × 10 -4 7.2 × 10 -5

Elevation 2.8 x 10 -4 0.4 x 10 -6 25.2 1.52 0.0438 4.1 x 10 -4 2.5 × 10 -5 220 32

to to to to

28 x 10-4 4 × 10 -6 11.8 x I0-4 7.2 x 10 -5

5. Hydraulic Line. There are two lines: A and B. A model for line A is developed, and the model

for line B is similar (index "a" should be replaced with "b"). Line A has four inputs, flows qa, qav, qapv,

and qasv, and a single output, pressure Pa (refer to Fig. 5). From [7], one obtains the line-A model as an
integrator, with the negative feedback signs as in Fig. 5:

[J,, = kla(-qa + qav - qap - qas) (31a)

Similarly, the line-B model is obtained:

I)b = klb(--qb -t- qbv -- qbp -- qbs) (31b)

As before, defining p = pa - Pb, one obtains

= kl(-q + qv - qp - qs) (32)

In these equations, the gains are

kl ---- (33)
Vo

where f7 is the effective bulk modulus (capacitance of the line), _ = 1.29 × 106 kPa (1.87 × 105 psi), and
vo is the total volume, vo = 27,200 cm 3 (1660 in.3), so that k_ = 47.3 kPa/cm 3 (113 psi/in.3). The values
are collected in Table 3.
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Table 3. Parameters of line A and line B.

Drive /_, kPa fl, psi Vo, cm 3 Vo, in. 3

Line A

Azimuth 1.29 x 106 1.87 x 105 27,200 1653.6

Elevation 1.29 × 10 6 1.87 x 105 24,500 1498.1

Line B

Azimuth 1.29 × 10 6 1.87 × 105 27,700 1690.4

Elevation 1.29 x 106 1.87 × 105 24,600 1499.9

6. Hydraulic System Model. Tile model of tile hydraulic system is derived by combining its

elements (active servo valve, shorting valve, passive valve, hydraulic lines, and hydraulic motors). By

introducing the new differential variables, the block diagram in Fig. 5 is simplified to the one in Fig. 6.

A detailed block diagram of the hydraulic system is shown in Fig. 7. Combining Eqs. (12), (14), (16),

(32), and (30) (or, alternatively, using the block diagram in Fig. 7), and defining the new state vector

X h = [Xl,X2.,X3] T, with three states, Xl = qv,X2 = qv, and x3 = p, and defining the input current, i,

motor rate Ore, and the single-output motor torque, To, one obtains

J:h = AhXh + BhoOm A- Bhii

To = ChXh + DhoOm + Dh,

(34a)

where

ACTIVE ___
SERVO
VALVE

- lq

IHYoRAu.,cl HYoRAuL'c --
qp

PASSIVE __VALVE

qs SHORTING __VALVE

Fig. 6. Simplified block diagram of the hydraulic drive.
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0 )1
-2Gwo -Wo

Ah= 1 0 0

3k_20 kt k; -_ 2k v - 2ks

[o]Ch = 0

D

(34b)

Dhi = 0

Dho = -- k,,D#

The plots of tile magnitudes of the transfer function in azimuth and elevation from i to To are shown

in Fig. 8. The plots of the magnitudes of the transfer functions in azimuth and elevation from 0m to To

are shown in Fig. 9.

C. Gearbox Model

The gearbox model was described in detail in [5], and its block diagram is given in Fig. 10. In this

diagram, To is the motor torque, 0p is the antenna angular rate, Wm is the motor rate, T is the gearbox
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Fig. 10. Block diagram of the gearbox.

torque, Jm is the motor inertia, k 9 is the gearbox (output) stiffness, and N is the gearbox ratio. This

model has two inputs, the motor torque, To, and the wheel (pinion) angular rate, _p, and a single output,

the gearbox torque, T.

The equations for this system are as follows:
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T

Jmu)m = To - -_ (35a)

T= kg (_-_ -Op) (35b)

Denoting the state variables Xl -- wm and x2 -- T, one obtains

-x2 To (36a)y--)=+

x2- kgx' kg_p (36b)
N

Defining the gearbox state as x a = Ix1 X2] T, input To and _p, and output T and win, one obtains the

gearbox state-space representation (Ag, Bg, Cg):

5% = Agx 9 + BglTo + Bg2_p

T = CglX 9 (37a)

_rn =Cg2:r,g

where

0Ag = k9 _1]NJ_

0

(37b)

1]

Cg2---- [10]

D. Drive Model

The drive model is obtained by combining the state--space representation of the electronic board,

Eq. (10); the hydraulic system, Eq. (34); and the gearbox, Eq. (37), according to the block diagram in

Fig. 1. Defining the drive state vector xa [xT, r T1T= Xh, Xg J , we obtain the state equations
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Xd = AdXd + Bdrr + BdtOp

JT = Cdx d

(38a)

where

Bb2C92

Ab 0 N_mDb_C92

Ad = BhiCb Ah Bh°C92 + Nt

BglDhiDb2C92

BglDhiCb BglCh A s + BglDhoCg2 + Nt

Bbl

Bdr = I Bh_Dbl

[ Bgl DmDH

o]Bdt = 0

Bg2

cd=[o o c_11

(38b)

The plots of the magnitudes of the transfer function in azimuth and elevation from r to T are shown

in Fig. 11. The plots of the transfer functions in azimuth and elevation from t)p to T are shown in Fig. 12.

III. Structure Model

The structural model is derived from the finite element model of tile antenna structure with free

rotations with respect to the elevation and azimuth axes. The finite element model consists of the

diagonal modal mass Mm(p x p), diagonal natural frequencies matrix _(p x p), diagonal modal damping

matrix Z(p x p), and modal matrix O(re x p), p <_ re, which consists of p eigenvectors ¢_ (mode shapes),

i = 1,..-,p:

q) = [¢1, ¢2,'", Cp] (39)

Let the finite element model have re degrees of freedom, with s inputs u(t), where u is s x 1 vector,

and with r outputs y(t), where y is r x 1 vector. If the input matrix is Bo(m x s), the output matrix

for displacement is Coq(r x re), and the output matrix for rates is Cov(r x m), then the input_output

relationship is given by the following second-order differential equation:

"(lm+ 2Zfl(lm + ft2qm =MmX6pT Bou

IYm =Coq ffPqm + Cov(_Orn

(40)

Define the state variable x as follows:
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[qm]• , = = (41)
X2 qm

where qm and qm are modal displacements and rates (such that q = _qm; q is the actual displacement);
then Eq. (40) can be presented as a set of first-order equations:

or in the following form:

:_1 _ X2 ]

_2 = - g/2Xl - 2ZOx2 + M_l_Bou8

y8 = C_¢xl + CovCX2

(42)

_:_ :A_x_ + B_us ]

fYs :Csx
(43a)
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where

[o I]As = _f_2 -2Z12

[o ]Bs = M_I_TBo

cs = [Co_,_ Cove]

(43b)

is the sought state-space model ill modal coordinates. In our case, us = [Ta Te], where Ta and Te
are torques at azimuth wheels and elevation pinions, respectively. The structure output consists of the

elevation and azimuth encoder angles and rates, pinion angles: elevation and cross-elevation pointing
errors, and other structural variables of interest. Two outputs, Opa and 0pe, the pinion rates in azimuth

and elevation, are of special interest. Thus, the structural state-space equations are as follows:

_ = Asx_ + B_aTa + B_Te

(44)

y= Csx

The ,nodal data obtained from the finite element model consist of 150 natural frequencies, w_; modes,

¢i; and modal masses, mini, i = 1,..., 150. Additionally, based on the measurements, the ,nodal damping
is assumed to be 1 percent, i.e., ¢i = 0.01. Based on this information, the state matrix As, as in Eq. (43b),

is determined by introducing the matrix of natural frequencies, _ = diag(wi), and modal damping,

Z = diag(_),i = 1,..-, 150.

The determination of matrices B_ and Cs is presented here for the azimuth wheel torque input and

the azimuth wheel rate output. For the azimuth wheel torque input, consider the azimuth wheel of radius

ra and the azimuth rail of radius Ra. Let nodes nl be located at the contact point of the wheel and the

rail. The torque applied to the wheel generates the force F, at node nl. The force is tangential to the

azimuth rail. Assuming a rigid pinion, the force F_ applied to the wheel is

Ta
Fa = -- (45)

ra

This force has x and y components, Fax and Fay [see Fig. 13(a)], such that

Fax = - F a cOSO/a -

T_
-- -- -- COS O_ a

ra

Ta .

Fa_ = Fa sin aa = -- sm a.
ra

(46)
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Fig. 13. Forces end rates at the azimuth pinion: (a) forces and (b) rates.

and aa is the angle marked in this figure. Let ex and e_ denote the unit vector (all but one component

are zero, and the nonzero component is equal to one), with the unit component at the location of the x
and y displacement of node nl in the finite element model. The input, F, to the finite element model

is F = Faxex + Fa_%. Therefore, Bo follows from the decomposition of F, such that F = BoTa. From
Eq. (46), it follows that

Bo _ e_g--- cos aa + eu sin aa (47)
ra ra

Next, from Eq. (43b), it follows that the nonzero (lower) part of B, after introduction of Eq. (47), is

- 1 (_Tez - 1 ffpTey
M_nl_T Bo = - M_n -- cosaa + M,_ -- sinaa

ra ra
(48a)

= - Mm 1¢--5xcos aa + Mm ICy sin aa (48b)
ra ra

where Cx and ¢_ are vectors of modal components of x and y displacements at node nl:

¢_ = _,re_ = [¢.1,¢.2,'",¢.1_0] T /

f(Py : ff_Tey = [¢yl, ¢y2,'", ¢y150] T

(49)

where Cx_ and Cvi are x and y displacements of mode i at node nl. Therefore, from Eqs. (43b) and (48b),
one obtains

0 M -ICy ]
B_ -M_ 1¢_ cosa_ + sina_

ra m ra

The output matrix derivation is presented here for the wheel rate, _. The wheel rotation is

(50)
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_)n- = v____.a (51 )
ra

where va is the tangential velocity of the wheel at the contact point [see Fig. 13(b)]. If vx and vy are x
and y components of va, and c_a is the angle marked in this figure, then

va = -vx cos aa + v u sin _a (52)

therefore,

eT T )
Opa --- -- vz cos aa + e-KYsin aa 0 (53a)

ra ra

and in modal coordinates

)_)p.= -¢e_cosa_+--sina_ qm = -'Xcosa_+--sina_ Or- (535)
\ ro ro ro

Finally, the matrix Cs, according to Eqs. (43b) and (53b), is

Cr cr ] (54)6"8 = 0 -" x cosa_+--sina_
ra ra

The structural model consists of m = 150 modes or 300 states. Modes not participating in system

dynamics are eliminated. Observability and controllability properties in the balanced representation are

used to determine insignificant modes. The balanced representation [9] is a state-space representation

with equally controllable and observable states. The Hankel singular value is a measure of the joint

controllability and observability of each balanced state variable. The states with small Hankel singular
values are deleted as weakly excited and weakly observed, causing minimal modeling error.

For flexible structures with small damping and distinct poles, the modal representation is almost

balanced, c.f. [10-12], and each mode is considered for the reduction separately. For a structure with

m modes, matrix Bs has 2m rows, and Cs has 2m columns. Denote bs as the last m rows of B_, cq as

the first m columns of Cs, and cr as the last m columns of Cs. Then b_i is the ith row of bs,cqi is the
ith column of ca, and cri is the ith column of cr. Denote fls2 T T and T= bsibsi,aqi = CqiCq_ , C_r_= C;_Cr_. The
Hankel singular value for the ith mode is given in [11] and [12]:

W 2 2 jr WriOdi Otri
,_2 = Wbiflsi _ qiC_qi 2 2 2 (55)

where the weighting factors Wbi > O, wai > 0, Wri > 0, and i = 1,...,m.

Care should be taken when determining Hankel singular values. Units should be consistent; other-

wise, some inputs or outputs receive more weight in Hankel singular-value determination than necessary.

Consider, for example, the azimuth encoder reading in arcseconds and the elevation encoder reading in

degrees. For the same angle, the numerical reading of the azimuth encoder is 3600 larger than the eleva-

tion encoder reading; hence, the elements for the azimuth output are much larger than those for elevation.
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On the other hand, some variables need more attention than others: Pointing error and encoder readings

are the most important factors in the antenna performance; hence, their importance has to be emphasized

in mode evaluation. For consistency of units and importance of variables, the weighting factors Wb_, wq_,

and wr_ are introduced. Typically, weights are set to 1.

For each mode, the Hankel singular value is determined and used to decide on the number of modes in

the reduced structural model. For the rigid body modes, Hankel singular values tend to infinity; hence,

rigid body modes are always included in the reduced model. Hankel singular values of the 150 modes of

the antenna model are plotted in Fig. 14. The reduced order model consists of 24 modes: 2 rigid-body

modes and 22 flexible modes.

The plots of the transfer function in azimuth and elevation (magnitude and phase) from the wheel

(pinion) torque T to the axis rate 8 are shown in Fig. 15. They show that the azimuth transfer function

has low frequency resonances (about 1.2 and 2.2 Hz), which are absent in the elevation transfer function.
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Fig. 14. Hankel singular values for the antenna structure.
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IV. Rate Loop Model

A rate loop block diagram is presented in Fig. 16, where Ta and Te denote the drive torques, _pa and

0pe denote pinion rates, and r_ and re are rate commands in azimuth and elevation, respectively. The
state-space equations are combined from the state equations of the azimuth and elevation drives [see

Eq. (38) and add subscript "a" for the azimuth drive and subscript "e" for the elevation drive] and the

structure [see Eq. (44)]. Combining them, and defining the rate loop state vector xr as xr = [Xd_, Xde, Xs],
where xd_ and xde are azimuth and elevation drive states, one obtains the rate-loop state-space equations:

:_r ----Arxr -F Brar_ + Brere

(56a)

_e _ Cexr

where

0Ar = Ade

L BsaCda BseCde

B_e= B e

c_=[0 0 cs]

B_,oGol
BdteGe |

As J

(56b)

where 0a and 0e are azimuth and elevation encoder readings, Cpa and Cpe are the output matrices for the

azimuth and elevation pinion rates, and Ca and Ce are the output matrices for the azimuth and elevation

encoders, respectively.

Figure 17 shows the magnitude of the transfer function from the azimuth rate input ra to the azimuth

encoder rate d), (solid line) and the magnitude of the transfer function from the elevation rate input re to
the elevation encoder rate _e (dashed line). The figure shows that the required identity relationship for

low frequencies is not acquired. The magnitude of the transfer functions for frequencies less than 0.3 Hz
is 0.74, below the required 1, due to inaccuracy in the model parameters (mainly in the hydraulic part).

This drawback can be removed by the experimental investigation of the parameters of the hydraulic

drives, such as motors, valves, and lines. However, this inaccuracy is corrected by tile positiou feedback

loop, as will be shown later. The high-frequency peaks in azimuth and elevation (8 Hz in azinmth and

20 Hz in elevation) are the gearbox resonances.
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V. Position Loop Model

The rate loop system with the proportional and integral (PI) controller is shown in Fig. 18, where ea

and e_ are the azimuth and elevation servo errors. For the series connection of the rate loop system and
T T

the controller, as in Fig. 18(a), define the state vector x o = [xai x¢i x_l ] with the new state variables

xei and xa_ (integrals of the errors) such that

}Xai = e a

Xei = ee

(57)

The system output y is defined in Eq. (56a), the encoder output is Or -- [Oa O_], and the input is

e T = [ca ee ]. The inputs to the rate loop systems are obtained from Fig. 18(a):

ra = kpaea + kiaXai I

Jre = kpeee + k=eXei

(58)

where kpe, k,e, kpa, and k=a are proportional and integral parameters of the controllers. Combining the

equations for the rate loop system with Eqs. (57) and (58), one obtains
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Xo = Aoxo + Boe

0 _ Cox 0

y _ Cx 0

(59a)

where

AO o o10 0

kiaBTa ki_Br_ Ar

Bo= 0

k_ B_a kp, B,.,

]Ca
Co= 0 C_

c=[o o cT]

For the closed-loop system [see Fig. 18(b)],

(59b)

= _- o (60)

where CT = [Ca Ce] is a command signal in azimuth, ca, and in elevation, c_. Introducing Eq. (60) to

Eq. (59), one obtains

Xcl = AclXcl + Boc

y = Cxcl

(61a)

where
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Ad = Ao - BoCo (61b)

The simulations shown in Figs. 19 through 22 have two sets of assumptions: (1) a proportional gain

of 1 in azimuth and elevation and an integral gain of 0.3 and (2) a proportional gain of 0.7 in azimuth

and elevation and an integral gain of 0.2. The closed-loop transfer functions from azimuth command

to azimuth encoder are shown in Fig. 19(a), and those from elevation command to elevation encoder

are shown in Fig. 19(b). They show a bandwidth of 0.1 Hz. The cross-coupling transfer functions from

azimuth command to elevation encoder and from elevation command to azimuth encoder are shown in

Fig. 20. They show low-level cross-coupling. The closed-loop step responses from azimuth command

to azimuth encoder are shown in Fig. 21(a), and those from elevation command to elevation encoder

are shown in Fig. 21(b). They show a 20- to 30-percent overshoot and a 7- to 9-s settling time. The

cross-coupling from azimuth step command to elevation encoder and from elevation step command to

azimuth encoder is shown in Fig. 22. The cross-coupling is of the order 10 -3.
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Vl. Wind Disturbance Simulations

Wind gust disturbances were modeled similarly to the DSS-13 antenna (see [13]) using the wind tunnel

pressure distribution on the dish taken from Blaylock. 1 Their time history is generated using the wind

Davenport spectrum (see [14] and [15]), determined for the Goldstone site. The simulations for the

50 km/h wind gave the results listed in Table 4 and compared with the simulation results of the DSS-13

antenna. The table shows that DSS 14 has better disturbance rejection properties (at the encoders) than
has the DSS-13 antenna.

Table 4. Servo errors in mdeg (3a rms)
for 50 km/h wind gusts.

Drive Front wind Side wind

Elevation, DSS 14 2.6 0.7

Elevation, DSS 13 14.6 1.9
Azimuth, DSS 14 0.1 2.1

Azimuth, DSS 13 0.5 2.3

VII. Conclusions

An analytical model of the DSS-14 antenna has been developed. The rate loop model consists of the

structural model (derived from the finite element model), gearbox model, hydraulic servo, and electronic

boxes. The position loop was closed, and the time and frequency responses were simulated. The wind

pointing errors of the DSS-14 antenna have been simulated. The model allows for detailed simulation of

antenna dynamics and for modifications and improvements to the antenna control system.

The simulations confirmed that the use of encoders located at drives limits the performance of the

antenna (mainly by reducing its bandwidth to 0.1 Hz). The use of the master equatorial or new encoders

1 R. B. Blaylock, "Aerodynamic Coefficients for Model of a Paraboloidal Reflector Directional Antenna Proposed for a

JPL Advanced Antenna System," JPL Interoffice Memorandum CP-6 (internal document), Jet Propulsion Laboratory,
Pasadena, California, 1964.
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located close to the axes of rotation of the antenna (similarly to the 34-m antennas) would allow expansion
of the bandwidth to 0.7-1.0 Hz.

The antenna model needs further improvement. First, in this model, certain parameters of the hy-

draulic drive are known with rather poor accuracy, and it influences the accuracy of the antenna model.

It is essential to use experimental techniques to get more precise values of the parameters. Secondly, the

RF pointing errors (in elevation and cross-elevation) of the antenna should be determined in order to
evaluate the precision of the antenna pointing.
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Appendix

Transfer Function Derivation

Each component of the electronics board is composed of operational amplifiers (opamps), resistors,

and capacitors. The basic configuration of an inverting opamp circuit is shown in Fig. A-1. The "+"

terminal of the opamp is grounded; thus, the "-" terminal voltage is zero, called a virtual ground. In
this situation, the currents il and i2 flowing through impedances Z1 and Z2 are equal to

il = vi_.._n_n
Z1 Ji2 -- rout
Z2

(A-l)

and their sum is zero; that is, il = -i2. Introducing them to Eq. (A-l) gives

rout = -kvin (A-2a

where

k: Z2
Z1 (A-2b
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' ' V=

m

Fig. A-1. Opamp circuit.

Vout

h Transfer Function Gto

A schematic for the transfer function Gto is shown in Fig. A-2(a), where the notation and the value
of each element were taken from JPL Drawing 9479871D. 2 This schematic can be simplified to the one

shown in Fig. A-2(b). In this figure,

Rs = (R51 -{- R51 -{- 1_51 Jr- R51) -1 Jr- }:_62 = 49.5 k_ (A-aa)

where R56 -- Rsr = R5s = R59 = 100 k_, and/{62 = 24.5 kQ; thus, Rs = 49.5 kl2. The component Z1 is

R64
Z1 = R6a + -_ R6a + /')'44 = 91.1 kl2 (A-ab)

1 + R64Caos

where R6a = 40 kl2, P_4 = 51.1 k_, and C40 = 0.15 #F. The time constant R64C40 = 0.0077 s is small,

thus neglected. Denote Rmt_ = 9.7 kFt and Rmte = 7.8 k_ the motor resistances in azimuth and elevation,

respectively, and C41 = 0.15/IF. Then, the component Z2 for the azimuth drive is as follows:

Rmta

Z2 = _ Rmta = 9.7 k_ (A-4a)
1 + RmtaC41s

and for the elevation drive,

Rmte

Z2 = "_ Rmt_ = 7.8 kFt (A-4b)
1 + RmteC41s

The time constants RmtaC41 = 0.0015 s and RmteC41 = 0.0012 s are of the order 10 -3 s, thus considered

small, and neglected.

The transfer function Gto for azimuth is

Gto - Rp _ 8800 = 0.151 (A-5a)
Rs + Rp 49,500 + 8800

and for elevation, it is

2 JPL Drawing 9479871D (internal document), Jet Propulsion Laboratory, Pasadena, California.
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Gto - Rp = 7200 = 0.127

Rs + Rp 49,500 + 7200

where Rp -- (Z_ -1 + Z_ -1) -1 = 8.8 k_'_ in azimuth and 7.2 kgt in elevation, while Rs -- 49.5 kfL

(a)
R56

R_ _
Tc4 ° ¢41

7"

_0

_:Rmt

_7

(b)

I
Fig. A-2. Schematic for the transfer function Gt_ (a) full and (b) simplified.

(A-5b)

Vto

o

II. Transfer Functions Grl and Gr2

The transfer functions Grl and Gr2 are determined simultaneously.

Fig. A-3(a), the parameters parameters of which are

Their schematic is given in

RI5 = 750 k_

R50 = 100 k_

RSl = 12.1 k_

R52 = 442 k_

R53 = 442 k_

P_5 = 909 ki_

P_6 = 90.9 k_

C31 = 1 #F

C42 = 0.1 #F

(A-6)

The schematic from Fig. A-3(a) can be transformed to the form shown in Fig. A-3(b). The value of Z3

is as follows:

Pt65

Z3 = R66 + 1 + R6sC42s =_ P_6 + R65 = 106 kl2 (A-7)
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In this variable, the small time constant R65642 = 0.0909 s was ignored.

The value Z4 is obtained as

Z4 = R53 + Ro - 4.65 × 106 1 + 0.400s (A-8)
1 + RoC31s 1 + 4.205s

where Ro = (Rs0 + R52 + RsoR52)/Rs1 = 4205 kfL

Having determined Z3 and Z4, the transfer functions Grl (from vr to vs) and Gr2 (from vto to vs) are

obtained:

Z4 _ 6.20 Go ]G_I - R15

Z4 _ 4.65 Go
Z3

Gr 2 i

(A-9)

where

1 + 0.400s
Go--

1 + 4.205s
(A-10)

is the transfer function of a lag compensator.

(a) r C31

! , I I--_-
,, R15 IR53 I R52 RS0

, , , J_

za _

!

I (b)

Fig.A-3. Schematicfor thetransfer functionsGrl and Gt2: (s) full and (b) simplified.

Vs
o

III. Transfer Function Gs

The transfer function Gs is determined from the schematic in Fig. A-4(a), and is shown in compact

form in Fig. A-4(b). For this schematic, R13 = 100 kf_, R36 = 10 k_, R43 = 24.9 kf_, and Cls = 0.1 /_F;

therefore, one obtains

R36

Z5 - -_ R36 = 10 kf_ (A-11)
1 + R36ClsS

where R36CIs : 0.0015 s -_ 0. Since vl = vsZ5/R43, and is = vl(Z51 -I- R-l), thus,
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G. = i..y_a= R13 + Z5 = 4.42 x 10 -5
vs R13R43

(A-12)

(a) R36 V1 is ---_ (b)

Fig. A-4. Schematic for the transfer function G#: (a) full and (b) simplified.
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